
Datarobot, Automated ML

Workflow and Benefits therein

The world's most advanced Enterprise Machine Learning Automation platform

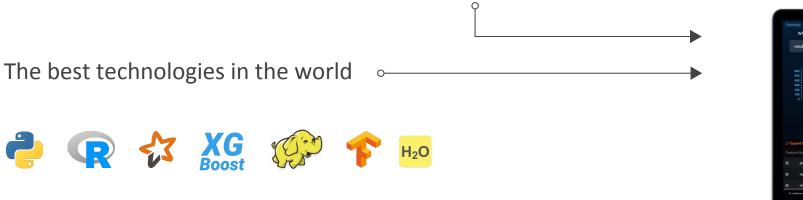
Best Practices and Technology

The top ranked Data Scientists in the world

Owen Zhang Product Advisor Highest: 1st MASTER

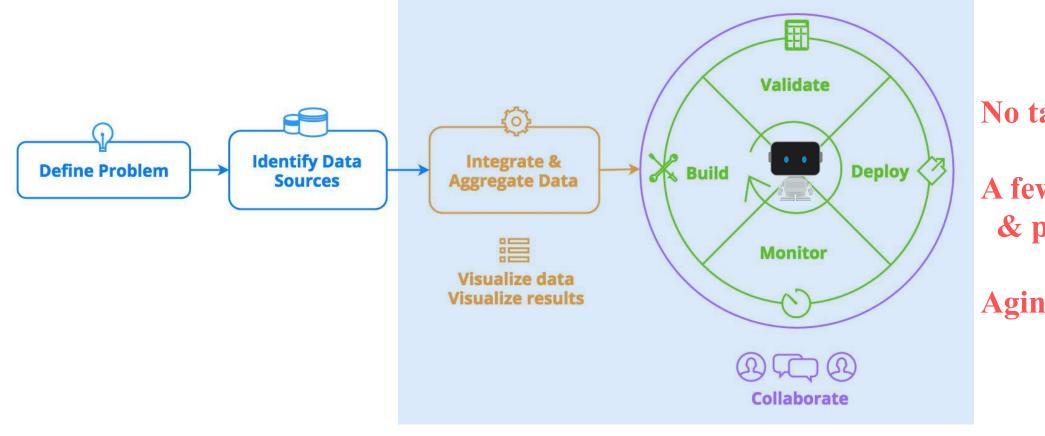
Xavier Conort Chief Data Scientist

Sergey Yurgenson Data Scientist Highest: 1st MASTER


Amanda Schierz Data Scientist Current: 1st Female, 1st in UK MASTER

Jeremy Achin CEO & Co-Founder Highest: 20th MASTER

Highest: 20th MASTER



Tom de Godoy CTO & Co-Founder

Data Science Methodology

Due to limited resource, call for amelioration

Not sufficient Explanations

Aging of model

A few algorithms & prone to overfit

No target goal

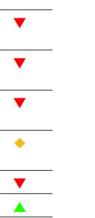
Motivations for AutoML

Value of diverse set of algorithms

Methodology driven

Problem driven

TABLE 10.1. Some characteristics of different learning methods. Key: A = good, $\diamond = fair, and \lor = poor.$


Characteristic	Neural	SVM	Trees	MARS	k-NN,
	Nets				Kernels
Natural handling of data of "mixed" type	•	•			•
Handling of missing values	•	•	A	A	A
Robustness to outliers in input space	•	•		•	
Insensitive to monotone transformations of inputs	•	•		•	•
Computational scalability (large N)	•	•	•	A	•
Ability to deal with irrel- evant inputs	•	▼	•	•	•
Ability to extract linear combinations of features	A	•	•	•	٠
Interpretability	•	▼	•	A	•
Predictive power				٠	

Source: http://statweb.stanford.edu/~tibs/ElemStatLearn/

What is Automated Machine Learning

- 10 steps to building models
- An expert system that knows how to do each of these 10 steps, without human instructions
- Human friendly not a black box
- Fast and accurate
- Replicable data science

eature ineering.

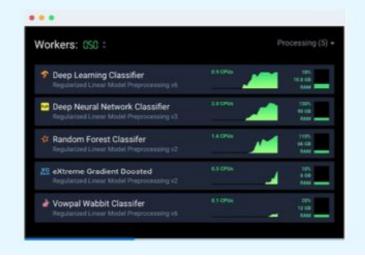
Diverse Algorithms

Algorithm Selection

What about DataRobot?

Key Points

- End to end automated machine learning all 10 steps ٠ are automated
- Hundreds of algorithms in the repository with new ٠ algorithms being added regularly
- Chooses the best algorithms for your data ٠
- Best-in-class human-friendly insights ٠
- Widest range of deployment options ٠
- Enterprise ready ٠
- Automatic model reports ٠
- Large support team around the world ٠



DataRobot Workflow

1. Ingest data

Begin a project by dragging a dataset here	DataRobot
	Begin a project by dragging a dataset here

3. DataRobot builds and tests hundreds of models to find the best fit

2. Select your prediction variable

What would you like to predict? readmitted Roves Readmitted Start	Summary		
Start	What would you like	to predict?	
Start	readmitted		\frown
	NO YES		Start
Metric to Optimize:			
Metric to Optimize: Recomended: LogLoss (accuracy) +			-

4. Explore the best models

5. Deploy the model and make predictions in your application

TensorFlow Deep	LearningC	No. 14174
	Predict	Deploy Mini
API Usage:	hython]	
PROJECT_10 - HIDEL_10 -	18784dd81	fc888936299
predictions,r app.dstarobst WODEL_ID), es headers-heade	the(USER	hri manana

Different but powerful way of analysis

A few perspectives (many more)

Single model

No need of Hold-out partition : just train/test or k-fold CV

Only interpretable algorithm is chosen □ Linear model is preferable

Blending starts from existing model

Interaction should be considered for model performance (linear model)

Multiple models

Hold-out partition for evaluation of several models

Interpretability is model-agnostic

Blending is fair-basis reflecting multiple models performance, with speed vs accuracy data

Interaction

automatically reflected in tree-based algorithms. If interaction should be of importance, DR has GA2M model and R/Python api support for that

parameter tuning is limited for a model and time-consuming

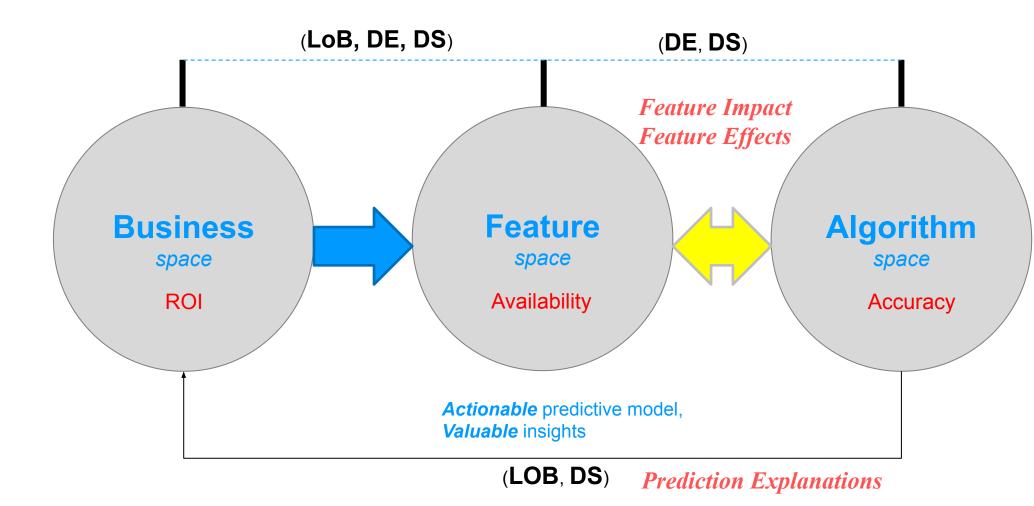
Parameter tuning is exhaustive for all candidate models.

One can easily confine the search space and quickly get the results

Benefits : safer model

Robust model free from the risk of overfitting

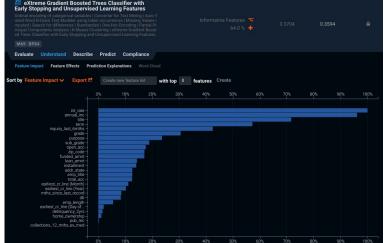
CV-Fold #1	Partition 1 (TRAINING)	Partition 2 (TRAINING)	Partition 3 (TRAINING)	Partition 4 (TRAINING)	Partition 5 (VALIDATION)	Holdout
CV-Fold #2	Partition 1 (TRAINING)	Partition 2 (TRAINING)	Partition 3 (TRAINING)	Partition 4 (VALIDATION)	Partition 5 (TRAINING)	Holdout
CV-Fold #3	Partition 1 (TRAINING)	Partition 2 (TRAINING)	Partition 3 (VALIDATION)	Partition 4 (TRAINING)	Partition 5 (TRAINING)	Holdout
CV-Fold #4	Partition 1 (TRAINING)	Partition 2 (VALIDATION)	Partition 3 (TRAINING)	Partition 4 (TRAINING)	Partition 5 (TRAINING)	Holdout
CV-Fold #5	Partition 1 (VALIDATION)	Partition 2 (TRAINING)	Partition 3 (TRAINING)	Partition 4 (TRAINING)	Partition 5 (TRAINING)	Holdout

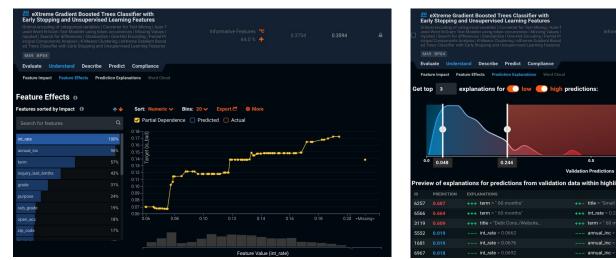

The holdout is completely hidden from the models during the training process. After you have selected your optimal model, you can score your model on this to get your holdout score.

Average of these 5 validation scores is the cross validation score

Benefits : more effort on feature space

"Feature engineering is the art of data science" (Sergey Yurgenson)





Benefits : Explainability

Model-agnostic explanation

[Feature Impact]

- The importance of each feature
- Coincides with domain knowledge?
- Any new insights?

[Feature Effect]

- Relationship among target and a feature
- Relationship reflects domain knowledge?
- Any new insights or feature transform?

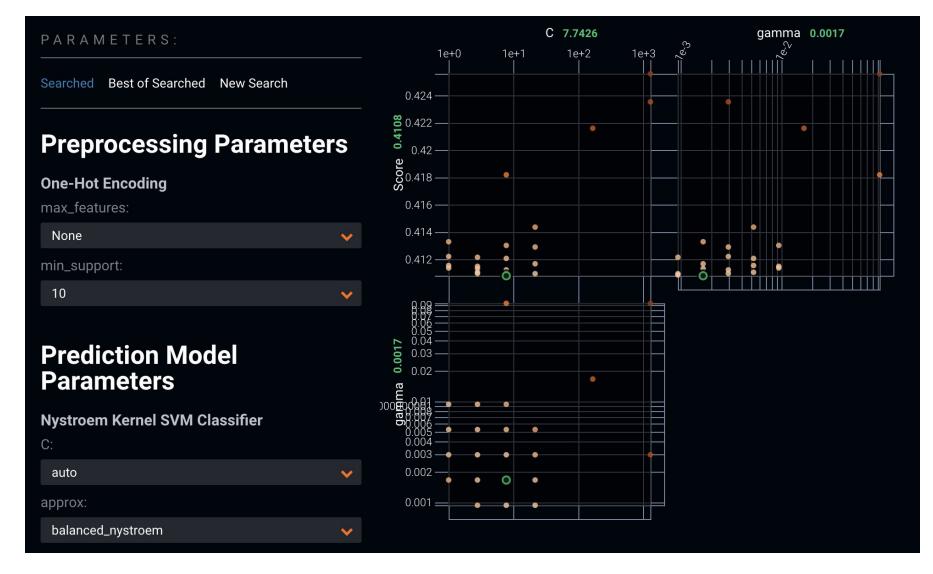
[Prediction Explanation]

- What is the basis of prediction?
- The predictions are reliablable to business people?

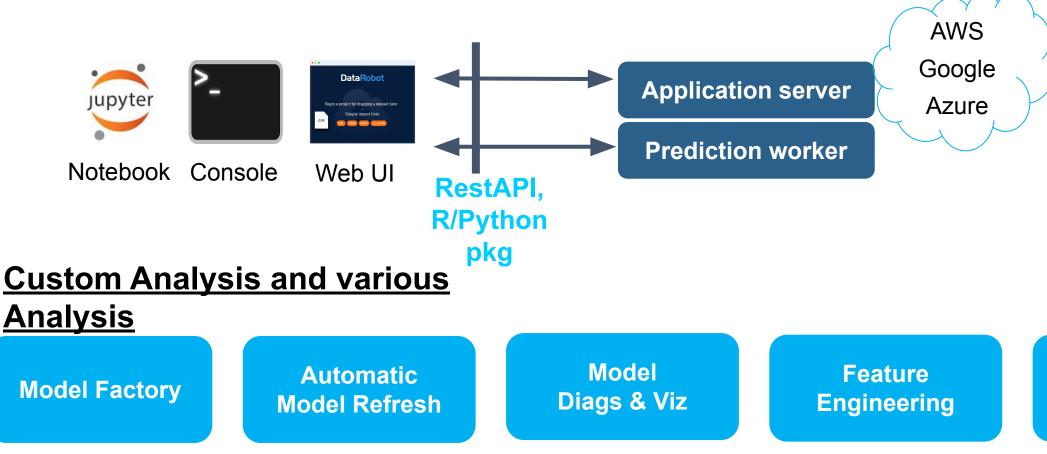
prediction? eliablable to

Benefits : effective blending

Search over candidates which promises tangible improvement

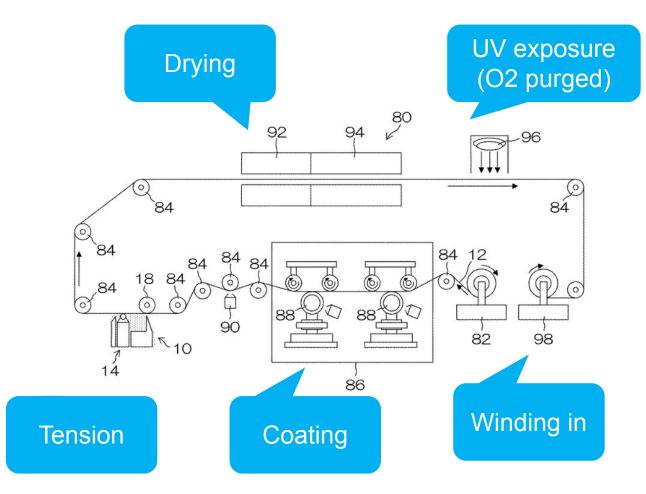


Benefits : Hyper-param Tuning


Gradient-free and effective pattern search

Benefits : API integration

data scientists and developers can use API



App. Integration

Demo : Bleedout prediction

Binary classification for QA

Process: Coating of thin film by covering the surface with coating solution and drying, followed by polymerizing with UV-light.

Problem: Unintended precipitation of powder such as unpolymerized monomer, antioxidant occurs causing "bleedout". It spoils the product and contaminates the production line.

Data:

- Material: length of film roll
- Project type: production vs experiment
- Control: winding tension, UV-exposure duration, O2 concentration etc



Demo : Bleedout MFG process

1) Unwinding

2) Coating

3) Drying

4) UV exposure

5) Tension Control

6) Winding

